This is BCE\#22.

I recommend you print out this page and bring it to class. Click here to show a set of five BCE22 student responses randomly selected from all of the student responses thus far in a new window.

John , here are your responses to the BCE and the Expert's response.
Our discussion of acids and bases has prepared you to calculate the pH of the following solutions,

> strong acids
> weak acids
> strong bases
> weak bases
the salt of a strong acid and a strong base the salt of a strong acid and a weak base the salt of aweak acid and a strong base common ion - weak acid and its conjugate base common ion - weak base and its conjugate acid

Our next system to consider in aqueous equilibria is the neutralization reaction. Lets look at a neutralization reaction in the context of the different types of acids and bases.

1. Predict the products of the following neutralization reactions:
a) $\mathrm{NaOH}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq})--->$
$\mathrm{NaNO3}(\mathrm{aq})+\mathrm{H} 2 \mathrm{O}(\mathrm{l})$
$\mathrm{NaOH}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq})--->\mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) 23 \%$
b) $\mathrm{KOH}(\mathrm{aq})+\mathrm{HCN}(\mathrm{aq})---->$
$\mathrm{KCN}(\mathrm{aq})+\mathrm{H} 2 \mathrm{O}(\mathrm{l})$
$\mathrm{KOH}(\mathrm{aq})+\mathrm{HCN}(\mathrm{aq})--->\mathrm{KCN}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
73%
c) $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq})--->$
$\mathrm{NH} 4 \mathrm{Cl}(\mathrm{aq})$
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq})---->\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$
2. Let get more quantitative with the first neutralization reaction. NOTE: This is solution stoichiometry calculations from CHEM 1314 so watch out! Suppose you are doing a titration (laboratory last week) to determine the concentration of a standardized solution of NaOH . Here is the following data that you collect in the experiment. (NOTE: The endpoint of a titration is when the mol of acid $=\mathbf{m o l}$ of base)

Volume of standard NaOH solution : $\mathbf{1 5 . 0 0} \mathbf{~ m L}$
Concentration of $\mathbf{H N O}_{3}: \mathbf{0 . 4 2 4} \mathbf{M}$
Volume of HNO_{3} solution required to reach the endpoint of the titration : $\mathbf{1 0 . 0 0} \mathbf{~ m L}$
a) how many mol of HNO_{3} reacted?
mol HNO $\mathbf{3} \mathbf{0 . 0 0 4 2 4}$

$\mathrm{mol} \mathrm{HNO}_{3}=0.0100 \mathrm{~L} *\left(0.424 \mathrm{~mol} \mathrm{HNO}_{3} / \mathbf{L}\right)=0.00424 \mathrm{~mol} \mathrm{HNO}_{3}$
b) how many mol of NaOH reacted?
mol NaOH 0.00424
$\mathrm{mol} \mathbf{N a O H}$ reacting $=\mathbf{m o l} \mathrm{HNO}_{3}$ reacting $=0.00424 \mathbf{m o l}$
c) concentration of the standard NaOH solution?
$0.283 \mathrm{M} \mathrm{NaOH} \eta q \%$
molarity of $\mathrm{NaOH}=\mathbf{m o l ~} \mathrm{NaOH} /$ liters solution $=0.00424 \mathrm{~mol} \mathrm{NaOH} / 0.015 \mathrm{~L}=0.283 \mathrm{M}$
3. Lets consider a titration where the concentration of $\mathbf{N a O H}$ is 0.283 M . In the titration the NaOH is added to a 25.0 mL sample of a $0.424 \mathrm{M} \mathrm{HNO}_{3}$ solution.
a) Calculate the pH of the HNO_{3} solution before any base is added.

$$
\begin{aligned}
& \mathbf{p H}=0.372 \quad \text { 2 } \% \% \\
& \mathbf{p H}=-\log \left[\mathrm{H}^{+}\right]
\end{aligned}
$$

In a solution that is $0.424 \mathrm{M} \mathrm{HNO}_{3}$ the $\left[\mathrm{H}^{+}\right]=0.424 \mathrm{M}$ because HNO_{3} is a strong acid.
$\mathrm{pH}=-\log (0.424)=0.373$
b) If 5.00 mL of $\mathbf{0 . 2 8 3} \mathbf{~ M ~ N a O H}$ is added to the 25.0 mL sample of $0.424 \mathrm{M} \mathrm{HNO}_{3}$ answer the following questions:
i) How many mol of NaOH have been added when 5.00 mLs of 0.283 M NaOH are added to the acid solution?
mol of NaOH added $0.001415 \quad q 3 \%$
$0.0050 \mathrm{~L} *(0.283 \mathrm{~mol} \mathrm{NaOH} / 1 \mathrm{~L})=0.00142 \mathrm{~mol} \mathrm{NaOH}$ added
ii) How many mol of HNO_{3} would react? mol of HNO_{3} reacting $0.001415 \quad 2 q \%$ $\mathrm{mol} \mathrm{HNO}_{3}$ reacting $=$ mole of NaOH added $=0.00142 \mathrm{~mol} \mathrm{HNO}_{3}$
iii) How many mol of HNO_{3} remain unreated? mol of HNO_{3} remaining 0.009185

The initial number of mol of HNO_{3} are $0.0250 \mathrm{~L}^{*}\left(0.424 \mathrm{~mol} \mathrm{HNO}_{3} / \mathbf{L} \mathrm{L}\right)=0.0106 \mathrm{~mol} \mathrm{HNO}_{3}$

From ii) the $\mathbf{m o l ~} \mathrm{HNO}_{3}$ reacting are $=\mathbf{0 . 0 0 1 4 2} \mathbf{~ m o l}$
So mol of HNO_{3} remaining $=\operatorname{mol}\left(\mathrm{HNO}_{3}\right)_{0}-\operatorname{mol}\left(\mathrm{HNO}_{3}\right)_{\mathrm{r}}=\mathbf{0 . 0 1 0 6}$ $\mathrm{mol}-\mathbf{0 . 0 0 1 4 2} \mathbf{~ m o l}=\mathbf{0 . 0 0 9 1 8} \mathbf{~ m o l}$
iv) What is the new concentration of $\mathbf{H N O}_{3}$ after addition of $\mathbf{N a O H}$
new $\left[\mathrm{HNO}_{3}\right] 0.306 \mathrm{M}$
The new concentration of $\mathrm{HNO}_{3}=\mathbf{m o l ~} \mathrm{HNO}_{3} /$ volume solution
We have to be careful with this calcualtion. The mol of HNO_{3} are in iii) but the volume of the solution is the volume of the sample of HNO_{3} initially plus the volume of NaOH solution added. So the calculation is...
$0.00918 \mathrm{~mol} \mathrm{HNO} 3 / 0.030 \mathrm{~L}=0.306 \mathrm{M} \mathrm{HNO}_{3}$

v) What is the new pH of the solution

$\mathbf{p H}=-\log \left[\mathbf{H}^{+}\right]$
In a solution that is $0.306 \mathrm{M} \mathrm{HNO}_{3}$ the $\left[\mathrm{H}^{+}\right]=0.306 \mathrm{M}$ because HNO_{3} is a strong acid.
$\mathrm{pH}=-\log (0.306)=0.514$
Notice after adding some NaOH the pH is higher. Since some of the HNO_{3} has been neutralized the $\mathbf{p H}$ increases.
4. Is there anything about the questions that you feel you do not understand? List your concerns/questions.
nothing
5. If there is one question you would like to have answered in lecture, what would that question be?
nothing

